Honors Chemistry – Unit 7 Review

Chapter 16 – Solutions

SOLUTIONS & SOLUBILITY VOCABULARY & CONCEPTS

1.	is the substance that is dissolved.
2.	is the substance that does the dissolving.
3.	is a homogeneous solution.
4.	A solution has the maximum amount of solute dissolved in a given amount of solvent.
5.	An solution can dissolve more solute.
6.	Opposite of soluble is
7.	is how many grams of solute dissolves in 100 mL of water.
8.	For most <u>solid</u> solutes, as temperature goes up, solubility goes
9.	For most gas solutes, as temperature goes up solubility goes

10. What are the three factors that an increase the rate of dissolving of a solute? Explain how they aid a substance in dissolving on a

molecular level.

- 11. Why must you keep a carbonated beverage cool to prevent it from going "flat"?
- 12. Explain the difference among saturated, unsaturated, and supersaturated solutions.

SOLUBILITY CHARTS – use the graph to the right

- 13. What is the solubility of NaCl at 25°C?
- 14. What is the solubility of KNO₃ at 70°C?
- 15. At what temperature is the solubility of NaNO₃ 90g/100mL H₂O? Remember the density of water is 1.0 g/mL.
- 16. How many grams of KClO₃ dissolve in 200 mL H₂O at 30°C?
- 17. How many grams of KCl would dissolve in 40 mL H₂O at 80°C?
- 18. How many grams of NH₃ would dissolve in 500 mL H₂O at
- 19. If 30 grams of KNO₃ are dissolved in 100 mL H₂O at 20°C, will the solution be saturated or unsaturated? Explain why.
- 20. If a solution of NaNO₃ was cooled from 60°C to 10°C, how much solute would precipitate out of solution?

MOLARITY

- 21. What is the molarity of a solution of Na₃PO₄ with 0.75 mol of solute in 950 mL of solution?
- 22. What is the molarity of a solution containing 10.00 g of H₃PO₄ dissolved in 500.0 mL of solution?
- 23. What mass of sodium chloride is needed to make 300.0 mL of a 0.50 M solution?
- 24. How many liters of solution are needed to dissolve 25.5 g sodium chloride if a concentration of 0.25 M is needed?

MOLAR DILUTIONS

- 25. You add 500.0 mL to 100.0 mL of a stock solution of 12 M HCl. What is the final concentration?
- 26. To make 1000.0 mL of a 1.0 M dilution of phosphoric acid solution (H₃PO₄), what volume of 6.0 M stock solution should you use?
- 27. If a 1000.0 mL dilute solution of CaCl₂ is made from 550.0 mL of 6.0 M stock solution, what is the concentration of dilute CaCl₂ solution?
- 28. How would you prepare 90.0 mL of 2.0 M sulfuric acid from 18 M stock solution?

Chapter 18 – Reaction Rates & Equilibrium RATES OF REACTION

- 1. What are the four factors that affect the rate of a chemical reaction?
- 2. Which of these statements is true?
 - a. Chemical reactions tend to slow down when the temperature rises.
 - b. Once a chemical reaction starts, the reacting particles no longer have to collide for products to form.
 - c. Increasing the total surface area of solid or liquid reactants increases the rate of the reaction.
- 3. Catalysts alter the rate of a chemical reaction by: (this is a multiple choice question select the best answer).
 - a. increasing the number of collisions between reactant atoms.
 - b. increasing the kinetic energy of each reactant atom.
 - c. lowering the activation energy barrier.
 - d. being consumed in the reaction.

Le CHATELIER'S PRINCIPLE

Use the following equation to complete the tables below with respect to the desired item – how does the stress effect concentration, pressure, and temperature.

 $12.6 \text{ kcal} + H_2(g) + I_2(g) \leftrightarrow 2HI(g)$ Equilibrium Stress $[l_2]$ [HI] κ $[H_2]$ Shiff remains the Add H₂ right decreases increases same Add I₂ Add HI 3. Remove H₂ 4. 5. Remove I, 6. Remove HI 7. Increase Temperature Decrease Temperature Increase Pressure Decrease Pressure

EQUILIBRIUM CONSTANT EXPRESSIONS

$$CO(g) + 2H_2(g) \leftarrow CH_3OH(g)$$

2. Write the equilibrium-constant expression for this reaction.

$$Fe_3O_4(s) + 4H_2(g)$$
 \longrightarrow $3Fe(s) + 4H_2O(g)$

3. An analysis of the equilibrium mixture in a 1-L flask shows 0.30 mol NOCl, 1.2 mol NO and 0.60 mol Cl_2 . Calculate the value of K_{eq} for this reaction at equilibrium.

$$2NOCl(g) \stackrel{\longleftarrow}{\longrightarrow} 2NO(g) + Cl_2(g)$$

4. At 750° C, the following reaction reaches equilibrium in a 1-L flask. The reaction begins with 0.10 mol H₂ and 0.10 mol CO₂. At equilibrium there is 0.047 mol H₂O and 0.047 mol CO. Calculate K_{eq} for the reaction.

$$H_2(g) + CO_2(g) \longrightarrow H_2O(g) + CO(g)$$

Chapter 19 – Acids, Bases & Salts

T 7	α	71	RIII	ARV	Q,	COL	VCI	TO	'C

1.	•	cid-base neutralization reaction is a(n)					
2.	A(n) is a substance that conducts electricity.						
3.		is called a(n)					
4.	According to Arrhenius, a compound containing hydrogen that ionizes to yield hydrogen ions in an aqueous solution is called a(n)						
5.							
	ite "A" if the statement is a property of a "X" if it is a property of both a basic an	an acidic solution. Write "B" if the statement is a property of a base, and acidic solution.					
6.	Feels smooth and slippery	10. Has a sour taste					
7.	Reacts vigorously with metals	11. Turns litmus paper from blue to red					
8. I	Has a bitter taste	12. Turns litmus paper from red to blue					
	s an electrolyte	13. Usually does not react with metals					
Sta	te "A" for acid, "B" for base and "S" for	r salt. In addition, write the name for the compound.					
	HCl						
	CaCl ₂						
	Na ₂ SO ₄	20. Mg(OH) ₂					
	HNO ₃						
- / •							
AC	ID & BASE PROBLEMS						
22.	What is the pH of peaches if the [OH-] =	3.16 x 10 ⁻¹¹ M? Are peaches acidic, basic or neutral?					
23.	An aqueous solution contains a 0.0361 M solution is acidic or basic.	I OH ⁻ concentration. Calculate the pOH, pH and [H ⁺]. Determine if the					
24.	Lake Ontario has water with an $[H^+]$ of approximately 1.1×10^{-6} M. Determine whether the water is slightly acidic of slightly basic.						
25.	If the pH of a diet soda is 3.21 at 25°C, what are the hydrogen ion and hydroxide ion concentrations in the soda?						
26.	Most fish species die in water with a $[H^+]$ of between 3.16 x 10^{-5} M and 1.0 x 10^{-5} M. What is the pH range where most fish species die? What are the corresponding $[OH^-]$ values for fish death?						
TIT	TRATION PROBLEMS						
		5.0 mL of the solution is neutralized by 48.3 mL of 0.20 M NaOH?					
28.	What is the molarity of sodium hydroxide	e if 30.0 mL of the solution is neutralized by 40.0 mL of 0.50 M H_3PO_4 ?					

29. How many milliliters of 1.0 M sulfuric acid are needed to neutralize 55 mL of a 0.75 M sodium hydroxide solution?