Honors Chemistry - Unit 7 Review

Chapter 16 - Solutions

SOLUTIONS \& SOLUBILITY VOCABULARY \& CONCEPTS

1. \qquad is the substance that is dissolved. is the substance that does the dissolving.
2. 3.
1. A \qquad is a homogeneous solution.

An \qquad solution has the maximum amount of solute dissolved in a given amount of solvent. Opposite of soluble is \qquad —.
7. \qquad is how many grams of solute dissolves in 100 mL of water.
For most solid solutes, as temperature goes up, solubility goes \qquad .
9. For most gas solutes, as temperature goes up solubility goes \qquad -.
10. What are the three factors that an increase the rate of dissolving of a solute? Explain how they aid a substance in dissolving on a molecular level.
11. Why must you keep a carbonated beverage cool to prevent it from going "flat"?
12. Explain the difference among saturated, unsaturated, and supersaturated solutions.

SOLUBILITY CHARTS - use the graph to the right

13. What is the solubility of NaCl at $25^{\circ} \mathrm{C}$?
14. What is the solubility of KNO_{3} at $70^{\circ} \mathrm{C}$?
15. At what temperature is the solubility of $\mathrm{NaNO}_{3} 90 \mathrm{~g} / 100 \mathrm{~mL}$ $\mathrm{H}_{2} \mathrm{O}$? Remember the density of water is $1.0 \mathrm{~g} / \mathrm{mL}$.
16. How many grams of KClO_{3} dissolve in $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}$?
17. How many grams of KCl would dissolve in $40 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$?
18. How many grams of NH_{3} would dissolve in $500 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$?
19. If 30 grams of KNO_{3} are dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$, will the solution be saturated or unsaturated? Explain why.
20. If a solution of NaNO_{3} was cooled from $60^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$, how much solute would precipitate out of solution?

MOLARITY

21. What is the molarity of a solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ with 0.75 mol of solute in 950 mL of solution?
22. What is the molarity of a solution containing 10.00 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ dissolved in 500.0 mL of solution?
23. What mass of sodium chloride is needed to make 300.0 mL of a 0.50 M solution?
24. How many liters of solution are needed to dissolve 25.5 g sodium chloride if a concentration of 0.25 M is needed?

MOLAR DILUTIONS

25. You add 500.0 mL to 100.0 mL of a stock solution of 12 M HCl . What is the final concentration?
26. To make 1000.0 mL of a 1.0 M dilution of phosphoric acid solution $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$, what volume of 6.0 M stock solution should you use?
27. If a 1000.0 mL dilute solution of CaCl_{2} is made from 550.0 mL of 6.0 M stock solution, what is the concentration of dilute CaCl_{2} solution?
28. How would you prepare 90.0 mL of 2.0 M sulfuric acid from 18 M stock solution?

Chapter 18 - Reaction Rates \& Equilibrium
 RATES OF REACTION

1. What are the four factors that affect the rate of a chemical reaction?
2. Which of these statements is true?
a. Chemical reactions tend to slow down when the temperature rises.
b. Once a chemical reaction starts, the reacting particles no longer have to collide for products to form.
c. Increasing the total surface area of solid or liquid reactants increases the rate of the reaction.
3. Catalysts alter the rate of a chemical reaction by: (this is a multiple choice question - select the best answer).
a. increasing the number of collisions between reactant atoms.
b. increasing the kinetic energy of each reactant atom.
c. lowering the activation energy barrier.
d. being consumed in the reaction.

Le CHATELIER's PRINCIPLE

Use the following equation to complete the tables below with respect to the desired item - how does the stress effect concentration, pressure, and temperature.

$$
12.6 \mathrm{kcal}+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

Stress	Equilibrium	$\left[\mathrm{H}_{2}\right]$	$\left[I_{2}\right]$	[HI]	K
1. Add H_{2}	right	-	decreases	increases	remains the same
2. Add $_{2}$			-		
3. Add HI				-	
4. Remove H_{2}					
5. Remove I_{2}			-		
6. Remove HI				-	
7. Increase Temperature					
8. Decrease Temperature					
9. Increase Pressure					
10. Decrease Pressure					

EQUILIBRIUM CONSTANT EXPRESSIONS

1. Write the equilibrium-constant expression for this reaction.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
2. Write the equilibrium-constant expression for this reaction.
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. An analysis of the equilibrium mixture in a 1-L flask shows $0.30 \mathrm{~mol} \mathrm{NOCl}, 1.2 \mathrm{~mol} \mathrm{NO}$ and $0.60 \mathrm{~mol} \mathrm{Cl}_{2}$. Calculate the value of $\mathrm{K}_{\text {eq }}$ for this reaction at equilibrium.
$2 \mathrm{NOCl}(\mathrm{g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
4. At $750^{\circ} \mathrm{C}$, the following reaction reaches equilibrium in a 1-L flask. The reaction begins with $0.10 \mathrm{~mol} \mathrm{H}_{2}$ and $0.10 \mathrm{~mol} \mathrm{CO}_{2}$. At equilibrium there is $0.047 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ and 0.047 mol CO . Calculate K_{eq} for the reaction.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

Chapter 19 - Acids, Bases \& Salts

VOCABULARY \& CONCEPTS

1. An ionic compound that forms from an acid-base neutralization reaction is $a(n)$ \qquad -.
2. $A(n)$ \qquad is a substance that conducts electricity.
3. The reaction between an acid and a base is called $a(n)$ \qquad .
4. According to Arrhenius, a compound containing hydrogen that ionizes to yield hydrogen ions in an aqueous solution is called a(n) \qquad _.
5. According to Arrhenius, a compound that ionizes to yield hydroxide ions $\left(\mathrm{OH}^{-}\right)$in an aqueous solution is called $a(n)$
\qquad .

Write " A " if the statement is a property of an acidic solution. Write " B " if the statement is a property of a base, and " X " if it is a property of both a basic and acidic solution.

6. Feels smooth and slippery \qquad 10. Has a sour taste \qquad
7. Reacts vigorously with metals \qquad
8. Has a bitter taste \qquad
9. Is an electrolyte \qquad
10. Turns litmus paper from blue to red
11. Turns litmus paper from red to blue
12. Usually does not react with metals
\qquad
\qquad
\qquad
State "A" for acid, " B " for base and " S " for salt. In addition, write the name for the compound.
13. HCl \qquad 18. NaOH \qquad
14. CaCl_{2}
15. $\mathrm{H}_{3} \mathrm{PO}_{4}$ \qquad
16. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
17. $\mathrm{Mg}(\mathrm{OH})_{2}$ \qquad
18. HNO_{3} \qquad 21. LiOH \qquad

ACID \& BASE PROBLEMS

22. What is the pH of peaches if the $\left[\mathrm{OH}^{-}\right]=3.16 \times 10^{-11} \mathrm{M}$? Are peaches acidic, basic or neutral?
23. An aqueous solution contains a $0.0361 \mathrm{M} \mathrm{OH}^{-}$concentration. Calculate the $\mathrm{pOH}, \mathrm{pH}$ and $\left[\mathrm{H}^{+}\right]$. Determine if the solution is acidic or basic.
24. Lake Ontario has water with an $\left[\mathrm{H}^{+}\right]$of approximately $1.1 \times 10^{-6} \mathrm{M}$. Determine whether the water is slightly acidic or slightly basic.
25. If the pH of a diet soda is 3.21 at $25^{\circ} \mathrm{C}$, what are the hydrogen ion and hydroxide ion concentrations in the soda?
26. Most fish species die in water with a $\left[\mathrm{H}^{+}\right]$of between $3.16 \times 10^{-5} \mathrm{M}$ and $1.0 \times 10^{-5} \mathrm{M}$. What is the pH range where most fish species die? What are the corresponding $\left[\mathrm{OH}^{-}\right]$values for fish death?

TITRATION PROBLEMS

27. What is the molarity of carbonic acid if 25.0 mL of the solution is neutralized by 48.3 mL of 0.20 M NaOH ?
28. What is the molarity of sodium hydroxide if 30.0 mL of the solution is neutralized by 40.0 mL of $0.50 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?
29. How many milliliters of 1.0 M sulfuric acid are needed to neutralize 55 mL of a 0.75 M sodium hydroxide solution?
